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Abstract – The traditional techniques of data analysis are often
not sufficient to characterize the complex dynamics of
respiration. In this study the respiratory pattern variability at
different levels of pressure support ventilation (PSV) has been
analyzed using nonlinear prediction methods. These methods
use the volume signals generated by the respiratory system in
order to construct a model of its dynamics, and then to
estimate the deterministic level of the system from the quality
of the predictions made with the model. Different methods of
prediction evaluation and neighborhood definition have been
considered. The incidence of different prediction depths and
embedding dimensions have been analyzed. A group of 12
patients on weaning trials from mechanical ventilation have
been studied at two different PSV levels. High statistically
significant differences have been obtained when comparing the
mean prediction error at two different PSV levels (p<0.002)
with non-parametric analysis of variance test (Wilcoxon’s
signed rank test). The embedding dimension needed to model
the system dynamics with low prediction error has also
presented significant differences (p<0.005) between the
complex dynamics of both PSV levels. Therefore, it may be
concluded that the respiratory pattern variability depends on
the level of pressure support ventilation.

Keywords – Respiratory pattern variability, nonlinear
prediction methods, pressure support ventilation.

I. INTRODUCTION

The possible causes of breath-to-breath variability in the
pattern of breathing have been discussed recently  [1]. The
traditional techniques of data analysis in the time and
frequency domains are often not sufficient to characterize
the complex dynamics of respiration. Various attempts have
been reported to apply the concept of nonlinear dynamics to
the analysis of complex physiological systems [2-4] and to
distinguish between variations that are random and those
that are deterministic (“chaotic”). It has been shown that
chaotic measurements like correlation dimension present an
irregular behavior of the respiratory system in the
wakefulness stages and a less complex dynamical structure
during sleep [5]. Other studies have demonstrated that the
dynamics of infant breathing during quiet sleep can best be
described as a chaotic system [6]. In our study the
respiratory pattern complexity in different levels of pressure
support ventilation has been analyzed using nonlinear
prediction methods.

II. MATERIAL AND METHODS

A. PATIENTS AND DATA ACQUISITION

A group of 12 patients on weaning trials from
mechanical ventilation has been studied in the Department
of Intensive Care Medicine at Santa Creu i Sant Pau
Hospital. Patients were submitted under two different levels
of pressure support ventilation (PSV). The respiratory
volume signals were obtained by means of a respiratory
inductive plethysmograph. Respiratory volume at each PSV
level was recorded during 30 minutes with a sampling
frequency of 250 Hz and resampled at 10 Hz for this study.

B. NONLINEAR PREDICTION

One method to decide whether an underlying
deterministic system is present is the following: To use the
time series generated by the system in order to construct a
model of the dynamics, and then to see whether the
predictions made from this model are accurate. If the
predictions are perfect, then the system is completely
deterministic. If the predictions are good, but not perfect,
then the system has a deterministic component. If the
predictions are bad, then the system is not deterministic at
all [7].

There are different ways to construct dynamical models
from data. Since all of the state variables of the systems are
not directly measured, the embedding technique to represent
all of the measured data’s state variables has been used. By
embedding the scalar time series Dt , the following vector
sequence is created:

D t = ,,( τ−tt DD . . . ))1( τ−− mtD

where  m  is   the   embedding   dimension   and   τ  is   the
embedding lag. Each Dt is a point in the m  – dimensional
embedding   space,  and  the  embedded  time  series can be
regarded as a sequence of points, one point at each time t.
Each point represents the state of the system at that time.

A deterministic data set sampled at discrete times can be
described by a discrete-time map

D 1+t  = F (D t )
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which is, however, immediately applicable only if the
mapping F is known. With F unknown some assumptions
about its properties have to be  made. With the minimal
assumption that the mapping F is continuous the following
prediction scheme can be constructed [8]. In order to predict
the future state Dt+1 given the present one Dt , the state
closest to Dt with respect to some norm is searched. Let’s
say that this closest point has time index  a. The definition
of determinism is that future events are set causally by the
past events. Dt describes the past events to Dt+1. Similarly
Da describes the past events to the measurement Da+1. If Dt

is close to Da , and if the system is deterministic, then it is
expected that Da+1 will also be close to Dt+1. In order to
predict a time h ahead of t  Dt+h the vector Da closest to Dt

has to be found and Da+h will be used as a predictor and it
will be called Pt+h.

 Every measurement of a continuous quantity is only
valid up to some finite resolution and this fact has to be
taken into account. The finite resolution implies that looking
for the single closest state is no longer the best can be done
since interpoint distances are contaminated with an
uncertainty. All points within a close region in phase space
have to be considered to be equally good predictions a
priori. Then the proposed prediction algorithm to be used
forms a neighborhood  U (Dt) around the point Dt. For all

points D
ia ∈  U (Dt), that is, all points close to Dt look up

the individual predictions D hai + . The finally accepted

prediction is then the average of all these individual
predictions:

P ht + =
)(

1

tDU ∑
∈

+
)( tia

i
DUD

haD

where )( tDU  denotes the number of elements of the

neighborhood  U (Dt ). Two ways have been considered in
order to define the neighborhood: i) the neighbors inside an
hypersphere of radius ε around the point Dt ; ii)  the k
neighbors closest to the point Dt .

Given a method for making a prediction Pt+h , an actual
measurement of Dt+h is needed in order to decide if the
prediction is good or bad. The difference between Pt+h and
Dt+h is the prediction error, which informs about the quality
of the prediction. As a single prediction might be good or
bad just by chance, in order to give a more meaningful
indication of the determinism in the data an average of many
prediction errors should be taken. Two different ways have
been considered in order to define this indication of
determinism: i) Nonlinear cross-prediction; ii) Leave-one-
out cross validation.

In the nonlinear cross-prediction approach the time
series is broken into M segments. For each of the M
segments, one at a time, the model is fit and then residuals
are calculated on each of the other segments. The residuals
are summarized by one number, the mean absolute value.
The result is a M-by-M matrix of cross-predictabilities. In

this study the respiratory volume data set at each PSV level
that contains 18000 samples has been divided in M=3
segments of 6000 samples. In this case the 3-by-3 matrix has
6 entries (the diagonal elements that correspond to self
prediction are not computed) and their mean value is
computed in each patient for each PSV level.

In the leave-one-out cross validation the time series of
length N is modeled N different times: for each model, a
single data point is left out when fitting the model and the
residual for the model is computed only for the left-out data
point. The result is a set of residuals one for each point, that
provide an estimate of the prediction error of a model. In
this study the respiratory volume data set at each PSV level
has been divided in N=9 subsets of 2000 samples.  In this
way the mean prediction error related to each patient for
each PSV level corresponds to the mean value of the
prediction errors in the nine subsets.

A preprocessing step has been applied to each
respiratory volume data set in order to improve the analysis
of the results. The respiratory volume signals have been
subtracted by their mean value and divided by their
variances. The embedding technique has been applied using
the embedding lag τ  corresponding to the first zero of the
autocorrelation function [9]. Fig. 1a and 1b show the actual
measurements and predictions for the respiratory volume of
a patient under low and high PSV, respectively. The
different quality of the prediction is shown comparing both
PSV levels.
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Fig. 1. Respiratory volume (actual measurement and prediction) of a
patient with a low (a) and high (b) pressure support ventilation level.

A non-parametric analysis of variance test, Wilcoxon’s
signed rank test, has been used to analyze statistically the
differences between the two PSV levels. This method is
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used for testing the difference between two populations
using matched samples.

III. RESULTS

The first step was to define the methodology to be
applied: nonlinear cross-prediction or leave-one-out cross
validation (auto-prediction), the best kind of neighborhood
and the best prediction horizon h. In this previous study
three patients were analyzed, and an embedding dimension
m  = 2 was considered. When deciding between cross-
prediction and auto-prediction two kinds of neighborhoods
were analyzed: the neighbors inside an hypersphere of
radius ε  = 0.2 and the k =20 closest neighbors. Tables I
and II present as an example the values obtained in patient
CRR using the neighbors inside an hypersphere and the k
closest neighbors, respectively. In the three analyzed
patients the statistical significance (p-value) obtained when
comparing low and high PSV levels were found not
dependent of the auto-prediction or cross-prediction
methodologies. Then, as the auto-prediction represents a
lower time consuming, this methodology has been selected
for the next steps.

TABLE I

MEAN ± STANDARD DEVIATION FOR THE MEAN PREDICTION
ERROR OF THE PATIENT CRR WITH M = 2, ε = 0.2, WHEN
CONSIDERING LEAVE-ONE-OUT CROSS VALIDATION AND
NONLINEAR CROSS-PREDICTION. STATISTICAL SIGNIFICANCE:
P-VALUE.

Low PSV High PSV p-value
Leave-one-out
validation 0.41± 0.05 0.81± 0.03 p < 0.01

Nonlinear cross-
prediction 0.45± 0.04 0.90± 0.06 p < 0.01

TABLE II

MEAN ± STANDARD DEVIATION FOR THE MEAN PREDICTION
ERROR OF THE PATIENT CRR WITH M = 2, K = 20,  WHEN
CONSIDERING LEAVE-ONE-OUT CROSS VALIDATION AND
NONLINEAR CROSS-PREDICTION.

Low PSV High PSV p-value
Leave-one-out
validation 0.38± 0.05 0.79± 0.02 p < 0.01

Nonlinear cross-
prediction 0.43± 0.04 0.88± 0.05 p < 0.01

In order to decide the best kind of neighborhood to
discriminate the different determinism of the respiratory
volume, in low and high PSV levels, the following
neighborhoods were considered: the neighbors inside
hyperspheres of radius  ε  = 0.1, 0.2, 0.3 and the k =20
closest neighbors. Table III  presents as an example the
values obtained in patient CRR. In the three analyzed
patients the statistical significance (p-value) obtained when

comparing low and high PSV levels were found not
dependent of the different neighborhood methodology.
Then, as the radius of the hyperspheres could be dependent
of the embedding dimension, the k closest neighbors
methodology has been selected for the next steps.

TABLE III

MEAN ± STANDARD DEVIATION FOR THE MEAN PREDICTION
ERROR OF THE PATIENT CRR WITH M = 2 WHEN CONSIDERING
DIFFERENT RADIUS ε OF THE HYPERSPHERES AND THE K=20
CLOSEST NEIGHBORS.

Low PSV High PSV p-value

ε = 0.1 0.45± 0.06 0.85± 0.02 p < 0.01

ε = 0.2 0.41± 0.05 0.81± 0.03 p < 0.01

ε = 0.3 0.39± 0.06 0.80± 0.02 p < 0.01

k neighbors 0.38± 0.05 0.79± 0.02 p < 0.01

The next analysis has been done to select the best
prediction horizon h . For each patient and for each PSV
level the mean respiratory period has been calculated. This
mean respiratory period translated to sample units is  called
hTtot. Three prediction horizons have been considered: 0.5
hTtot, hTtot and 2 hTtot. Table IV presents as an example the
values obtained in patient CRR using the different
prediction horizons. In the three analyzed patients the
statistical significance (p-value) obtained when comparing
low and high PSV levels were found not dependent of the
considered hvalue. A prediction depth related to the mean
respiratory period has been selected for the next steps.

TABLE IV

MEAN ± STANDARD DEVIATION FOR THE MEAN PREDICTION
ERROR OF THE PATIENT CRR WITH M = 2 WHEN CONSIDERING
DIFFERENT PREDICTION HORIZONS H.

Low PSV High PSV p-value

0.5 Ttoth 0.39± 0.07 0.67± 0.09 p < 0.01

Ttoth 0.38± 0.05 0.79± 0.02 p < 0.01

2 Ttoth 0.55± 0.09 0.81± 0.08 p < 0.01

The incidence of the embedding dimension m on the
prediction errors has been analyzed in all the patients for
each one of the PSV levels. Fig. 2 shows as an example the
relation between the mean prediction error and the
embedding dimension for the patient CRR. The behavior
depends on the PSV level as can be seen in the figure.

In order to analyze the level of determinism in the
respiratory volume signals related to high PSV level in
comparison with the low PSV level, Table V shows the
mean prediction errors obtained for m = 2 when considering
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all the patients. The results show a statistically significant
difference (p<0.002) between both groups.
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Fig. 2. Prediction errors obtained as a function of the embedding
dimension m for the patient CRR.

TABLE V

MEAN ± STANDARD DEVIATION OF THE MEAN PREDICTION
ERROR FOR ALL THE PATIENTS.

Low PSV High PSV p-value

Mean prediction
error

0.36± 0.09 0.59± 0.12 p < 0.002

Another way to analyze the results is the study of the
embedding dimension needed to model the dynamics of the
patients with a low prediction error (< 0.40). For example in
patient CRR (Figure 2) at high PSV level an embedding
dimension  m = 8 is needed to get a prediction error below
0.4, while a  m = 2 is enough to get the same prediction error
for the low PSV level. Table VI shows the values obtained
when analyzing all the patients. The embedding dimension
needed to model the dynamics of the patients with a low
prediction error show a statistically significant difference
(p<0.005) between both groups.

TABLE VI

MEAN ± STANDARD DEVIATION FOR THE EMBEDDING
DIMENSION NEEDED TO MODEL THE DYNAMICS OF THE
PATIENTS WITH A REDUCED PREDICTION ERROR.

Low PSV High PSV p-value

Embedding
dimension

2.67± 1.30 6.33± 2.23 p < 0.005

V. DISCUSSION AND CONCLUSIONS

To compare the respiratory pattern variability at two
different levels of pressure support ventilation nonlinear
prediction methods have been applied. The volume time

series have been used to construct a model of the respiratory
system dynamics and the accuracy of the predictions made
from the model have been analyzed. Two different ways
have been considered in order to define the indication of
determinism: nonlinear cross-prediction and leave-one-out
cross validation. Two kinds of neighborhoods have been
analyzed: the neighbors inside an hypersphere of radius ε
and the k neighbors closed to a point in the phase space. The
incidence of different prediction depths has been also
considered. The analysis of the prediction error as a function
of the embedding dimension has been used to propose a new
index to discriminate different respiratory pattern variability
levels. High statistically significant differences have been
obtained when comparing the mean prediction error at two
different PSV levels (p<0.002). The embedding dimension
needed to model the dynamics of the system with a low
prediction error is also a good parameter to discriminate
(p<0.005) different respiratory patterns. Therefore, it may be
concluded that the respiratory pattern variability depends on
the level of pressure support ventilation.
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